БҮТҮН РАЦИОНАЛДЫК ФУНКЦИЯ: нускалардын айырмасы

Кыргызстан Энциклопедия жана Терминология Борбору дан
Навигацияга өтүү Издөөгө өтүү
vol2_>KadyrM
No edit summary
 
No edit summary
 
(3 intermediate revisions by 3 users not shown)
1 сап: 1 сап:
'''БҮТҮН РАЦИОНАЛДЫК ФУ&#769;НКЦИЯ ''' – көп мүчө. Мис., ''y=a''<sub>0</sub>''x<sup>n+</sup>a''<sub>1</sub>''x<sup>n''</sup><sup>–1</sup>+…+''a<sub>n''</sub><sub>–1</sub>''x+a<sub>n</sub>'' түрүндөгү функция, мында ''a''<sub>0</sub>, ''a''<sub>1</sub>, …, ''a<sub>n</sub>'' – чыныгы же комплекстик сандар, ''x'' – өзгөрмө чоӊдук. Б. р. ф-нын маанисин ''х'' тин каалаган маанисинде жөнөкөй арифм. амалдар (кошуу, кемитүү, көбөйтүү) аркылуу табууга болот. ''a''<sub>0</sub>, ''a''<sub>1</sub>, …, ''a<sub>n''</sub><sub>–1</sub>, ''x=z'' комплекстүү болгон учурда, Б. р. ф. ''анализдик функция'' болот, б. а. бүтүн функция болуп калат. Эки Б. р. ф-нын айырмасы, суммасы ж-а көбөйтүндүсү кайра эле Б. р. ф. болот. Алар айрым татаал функциянын маанисин жакындатып табууда кеӊири колдонулат.
'''БҮТҮН РАЦИОНАЛДЫК ФУ&#769;НКЦИЯ ''' – көп мүчө. Мисалы, <math>{y}</math><math>=</math><math>{a}</math><sub>0</sub><math>{x}</math><sup><math>{n}</math></sup><math>+</math>''<math>{a}</math>''<sub>1</sub>''<math>{x}</math><sup><math>{n}</math>''<sup>–1</sup><math>+</math><math>+</math>''<math>{a}</math>''<sub><math>{n}</math>–1</sub>''<math>{x}</math><math>+</math><math>{a}</math><sub><math>{n}</math></sub>'' түрүндөгү функция, мында ''<math>{a}</math>''<sub>0</sub>, ''<math>{a}</math>''<sub>1</sub>, …, ''<math>{a}</math><sub><math>{n}</math></sub>'' – чыныгы же комплекстик сандар, ''<math>{x}</math>'' – өзгөрмө чоӊдук. Бүтүн рационалдык функциянын маанисин ''х'' тин каалаган маанисинде жөнөкөй арифметикалык амалдар (кошуу, кемитүү, көбөйтүү) аркылуу табууга болот. ''<math>{a}</math>''<sub>0</sub>, ''<math>{a}</math>''<sub>1</sub>, …, ''<math>{a}</math><sub><math>{n}</math>''<sub>–1</sub>, ''<math>{x}</math>=''<math>{z}</math> комплекстүү болгон учурда, бүтүн рационалдык функция ''анализдик функция'' болот, башкача айтканда бүтүн функция болуп калат. Эки бүтүн рационалдык функциянын айырмасы, суммасы жана көбөйтүндүсү кайра эле бүтүн рационалдык функция болот. Алар айрым татаал функциянын маанисин жакындатып табууда кеӊири колдонулат.
[[Category: 2-том]]
[[Category: 2-том]]

05:34, 10 Декабрь (Бештин айы) 2024 -га соңку нускасы

БҮТҮН РАЦИОНАЛДЫК ФУ́НКЦИЯ – көп мүчө. Мисалы, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {y}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} 0Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} 1Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n}} –1Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +}Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n}} –1Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n}} түрүндөгү функция, мында Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} 0, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} 1, …, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n}} – чыныгы же комплекстик сандар, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x}} – өзгөрмө чоӊдук. Бүтүн рационалдык функциянын маанисин х тин каалаган маанисинде жөнөкөй арифметикалык амалдар (кошуу, кемитүү, көбөйтүү) аркылуу табууга болот. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} 0, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} 1, …, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {a}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n}} –1, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {x}} =Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {z}} комплекстүү болгон учурда, бүтүн рационалдык функция анализдик функция болот, башкача айтканда бүтүн функция болуп калат. Эки бүтүн рационалдык функциянын айырмасы, суммасы жана көбөйтүндүсү кайра эле бүтүн рационалдык функция болот. Алар айрым татаал функциянын маанисин жакындатып табууда кеӊири колдонулат.