БАРАБАРДЫК АКСИОМАЛАРЫ: нускалардын айырмасы
No edit summary |
No edit summary |
||
7 сап: | 7 сап: | ||
</math> формуласын алуу керек. Эгер каралып жаткан тилдин формулалары ж-а термдери логикалык байламталардын жана супер позициялардын жардамы аркылуу атомардык формулалардан жана термдерден түзүлсө, анда келтирилген барабардык аксиомаларын, <math>\varphi | </math> формуласын алуу керек. Эгер каралып жаткан тилдин формулалары ж-а термдери логикалык байламталардын жана супер позициялардын жардамы аркылуу атомардык формулалардан жана термдерден түзүлсө, анда келтирилген барабардык аксиомаларын, <math>\varphi | ||
</math> нин ж-а <math>t | </math> нин ж-а <math>t | ||
</math> нын ордуна атомардык формулалар жана термдер алынганда, алардын жеке учурунан бөлүп алса болот. Символдук түрдө:<br/><math>x_i=y_i\land P( | </math> нын ордуна атомардык формулалар жана термдер алынганда, алардын жеке учурунан бөлүп алса болот. Символдук түрдө:<br/><math>x_i=y_i\land P(x_1, ...x_i, ...x_n)\Rightarrow P(x_1, ...y_i, ...x_n) | ||
</math>, | </math>, | ||
<math>x_i=y_i\Rightarrow f( | <math>x_i=y_i\Rightarrow f(x_1, ...x_i, ...x_n) = f(x_1, ...y_i, ...x_n), | ||
</math><br />мында <math>P | </math><br />мында <math>P | ||
</math> ж-а <math>f-n | </math> ж-а <math>f-n |
04:09, 27 Март (Жалган куран) 2025 -га соңку нускасы
БАРАБАРДЫК АКСИОМАЛАРЫ – математикалык далилдөөлөрдөгү барабардык катышынын колдонулушун тартиптөөчү аксиомалар. Бул аксиомалар барабардык катышынын рефлексивдүүлүгүн жана теӊди теӊи менен алмаштырууга боло тургандыгын аныктайт. Барабардык аксиомалары символдук түрдө төмөнкүчө жазылат: мында φ– каалагандай формула, – каралып жаткан тилдин каалагандай терми, өзгөрмөлөр. Барабардык аксиомаларынын жардамы менен барабардык катышынын симметриялуулугу, транзиттүүлүгү далилденет. Ал үчүн нин ордуна биринчи учурда , экинчи учурда формуласын алуу керек. Эгер каралып жаткан тилдин формулалары ж-а термдери логикалык байламталардын жана супер позициялардын жардамы аркылуу атомардык формулалардан жана термдерден түзүлсө, анда келтирилген барабардык аксиомаларын, нин ж-а нын ордуна атомардык формулалар жана термдер алынганда, алардын жеке учурунан бөлүп алса болот. Символдук түрдө:
,
мында ж-а -орундуу предикаттык ж-а функционалдык символдорду түшүндүрөт.
А. А. Чекеев, С. С. Токсонбаев.