ГАМИЛЬТОН ОПЕРАТОРУ
ᐁГА́МИЛЬТОН ОПЕРАТОРУ, н а б л а - о п е р а т о р, ᐁ – о п е р а т о р, г а м и л ь т о н и а н –
ᐁ
түрүндөгү дифференциалдык оператор (мында – координата орттору). ᐁ – өз алдынча чыныгы мааниге ээ эмес. Скалярдык же вектордук функциялар м-н айкалышканда гана чыныгы мааниге ээ. Эгер Гамильтон операторун скалярдык функциясына колдонсо (ᐁ– ни вектор м-н көбөйүндүсү деп), анда ал функциянын градиентине ээ болот: ᐁ. Эгерде ᐁ – операторун вектор-функциясын колдонсок ( ᐁ ны векторлордун скалярдык көбөйтүндүсү деп), анда векторунун дивергенциясы келип чыгат: ᐁ
мындагы ах, ау, аz – а векторунун координаталары. Гамильтон операторунун скалярдык квадраты Лаплас операторун берет:
Бул оператор м-н
белгисин 1953-жылы ирландиялык математик
ж-а астроном У. Гамильтон (1805–65), ал эми белгиси үчүн «Гамильтон оператору» термининин «набла» аталышын 1892-жылы англиялык физик О. Хевисайд (1850–1925) киргизген.